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Abstract

During the course of this project we introduced a new
technique in reinforcement learning called the Understudy
approach. This method is inspired by other techniques such
as Curriculum and Imitation learning. It aims to train
agents to learn complex tasks by combining the models of
agents trained on simpler objectives. Specifically we ex-
plored using the Understudy approach to encourage collab-
oration between two agents whose objective was to collect
multiple coins in a room as efficiently as possible. In this
scenario only one of the agents is given the location of the
coins. It must not only move to collect the coins itself but
it must also send commands to another agent revealing the
locations of the coins.

1. Introduction
Applying Reinforcement Learning [9] to games in order

to create intelligent bots that can learn and perform better
than established human players is on the rise. These bots are
able to learn the rules of a game and develop winning strate-
gies. In order to learn these strategies, the bots will play a
video game thousands if not millions of times. Each move
they make can trigger positive and/or negative rewards that
provide feedback as to whether or not each move is ben-
eficial. This process is very similar to the way our brains
work when learning how to do a new task. We perform
certain actions with the hope of certain rewards, be it short
term or long term (rewards not immediately achieved but
can be expected in the future). There have been many such
intelligent bots trained in this fashion, perhaps the most ex-
ceptional being AlphaGO, Google’s Deep Mind bot which
can beat expert human players in the game of Go [7].
In games involving teamwork, co-operation is essential to
developing useful strategies [8]. There are methods [4]
which consider action policies of other agents and are able
to successfully learn policies that require complex multi-

agent coordination. Cooperation between agents is difficult
because it requires agents to perform multiple tasks at once.
They must learn how to accomplish the task of winning the
game while also identifying how to effectively work with
any teammates. These models can be very difficult to train
from scratch. This paper focuses on implementing a new
method for training complex reinforcement learning models
that we introduce as the Understudy approach. This method
is inspired by the Curriculum training method which trains
agents on complex tasks by slowly increasing the task diffi-
culty through various training iterations.

The Understudy approach is useful for when you would
like to train an agent to perform multiple tasks at the same
time. The basic idea is that you train agents on each task in-
dividually. After training is complete, move both agents to
the same environment and have another agent called the Un-
derstudy learn from their actions. 1 This technique has the
potential to be a valuable tool for engineers to train agents
more efficiently on complex tasks.

2. Background

Markov decision processes (MDPs) [5] facilitate a math-
ematical framework which helps model decision making in
situations where outcomes are sometimes random but are
also partly influenced by the decisions made by the decision
maker. Therefore MDPs come in handy when it comes to
solving the optimization problems found in Reinforcement
Learning.

Concretely, Markov Decision Processes try to find a pol-
icy π which specifies the action a, also given by π(s), that
needs to be taken by the decision maker while in the current
state s. When an MDP is combined with policies in this
way for giving rise to set of actions for each state, it forms
a Markov chain.

Markov Games [3] allows one to widen the framework of
MDP’s to include multiple adaptive agents with interacting

1Code is available here at https://github.com/Yarlak/682Understudy
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or competing goals.
Selection of the policies in Markov games can be done

via several techniques, but policy gradient methods stand
out as they have better convergence properties, are effective
in continuous action spaces and can learn stochastic poli-
cies.

However, they are highly sensitive to the choice of step-
sizes and are easily overwhelmed by any noise while train-
ing. However the Proximal Policy Optimization [6] tech-
nique strikes a balance between sample complexity, and
ease of tuning, trying to compute an update at each step
that minimizes the cost function while ensuring the devia-
tion from the previous policy is relatively small.

PPO has the following objective function:

LCLIP (θ) = Ê[min(r(θ)Ât, clip(rt(θ), 1ε, 1 + ε)Ât)]

Where θ denotes the policy parameter, Ê denotes the
Emperical Expectation over time steps, rt is the ratio of the
probability under the old and new policies, Ât is the esti-
mated Advantage at time t, ε is usually a hyperparameter.

The essence of human intelligence is the understanding
of the concept of co-operation for the greater long-term ben-
efits. It’s also a heavily researched topic in Multi-agent rein-
forcement learning. Co-operation requires communication
of any kind between the agents, which is well explored in
[4]. The paper also empirically shows that learning is faster
when it is shared [2] and also how curriculum learning helps
to train MARL systems faster.

We use these concepts and describe our approach below.

3. Methodology
Using reinforcement learning to train agents to accom-

plish difficult and complex tasks can be challenging to say
the least. This is because agents that start training from
scratch need to attempt the task a very large number of times
before they can start to see a recognizable pattern between
the observations from their environment and the correct ac-
tions to perform. If a task is very complex then it will take
the agent a very large amount of time before such a pattern
can be recognized. If there is an error in the reward function
being used then it is possible the agent will never learn to
accomplish the task. Training agents for difficult tasks can
be made easier by methods like Curriculum learning which
gradually increase the difficulty of the agents task by mak-
ing changes to the environment during training. However,
this method is somewhat brittle as it does not allow much
variation in the number of observations or actions made by
the agent throughout the course of training. Another method
known as Imitation learning uses data collected from human
players playing the game to train the agents. However, this
can be very time consuming as complex games could re-
quire a large amount of training data requiring the human
player to play the game for a very long time.

We propose a different method called the Understudy ap-
proach which is inspired by both Curriculum and Imitation
learning. It can be used to gradually increase the difficulty
and/or complexity of a task while allowing for changes in
the observations and actions of the agent. This method
also generates training data for the agent similar to imita-
tion learning but does not require a human player to spend
countless hours playing the game. The basic idea is to break
up the difficult task into smaller less complex tasks and train
agents to solve them (these agents will be called leads). All
the trained leads will then be placed in the same environ-
ment with another agent called the understudy. The under-
study will be trained by making the same observations as
the leads and its reward function will solely be based upon
how similar its actions are to those of the leads. This is
similar to imitation learning with the exception that trained
agents (the leads) are generating the training data for the un-
derstudy instead of human players. The goal is to train the
understudy to act like the leads. If there are multiple leads
then the understudy may be able to learn how to perform
multiple tasks at the same time.

Figure 1. Outline for training an understudy using two Lead
agents. Please note that both Leads 1 and 2 are fully trained before
being used to train the understudy. The understudy’s reward func-
tion is solely based on how closely its outputs resemble that of the
Leads.

For example, lets consider the scenario depicted in Fig-
ure 1 in which we would like to train an agent to perform
two tasks (Task A and Task B) at the same time. Using
the Understudy approach we could train a different lead on
each of the tasks (Lead 1 for Task A and Lead 2 for Task
B). The observation and action spaces of the leads are Ob-
1 and Ob-2 and Act-1 and Act-2 respectively. After suc-
cessfully training on their tasks both leads are placed in the
same environment with a new untrained agent (the under-
study). The observation space of the understudy contains
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most if not all of the observations in Ob-1 and Ob-2. The
action space of the understudy contains all actions in Act-1
and Act-2. During training, the understudy will not inter-
act with the environment. Its training will simply consist of
trying to replicate the actions of both leads given the cur-
rent environment. Its reward function will only consist of
how closely its actions resemble those of the leads. In this
manner, we may be able to train an understudy that can ac-
complish both Task A and Task B at the same time.

4. Experimentation
Our goal is to train two agents to work together to collect

two coins randomly generated in an open room as quickly
as possible. One agent takes the role of captain and the
other the servant. Both the captain and the servant are able
to move around the room and collect coins. However only
the captain is shown the location of the coins and it is re-
sponsible for sending movement instructions to the servant.

4.1. Tools

All experiments for this project were completed using
the Unity ML Agents package[1] created for the Unity 3D
game engine. This package allows users to train reinforce-
ment learning models with tensorflow and Proximal Policy
Optimization (PPO). The code to train these models was in-
cluded in the package and provided for us. We built the
environments described below by modifying a demo envi-
ronment provided as part of a tutorial from the Unity ML
Agents package. The bulk of the programming performed
as part of this project was focused on coming up with the
best reward functions to accomplish the listed tasks and cre-
ating multiple environments that could be used for training
and testing the various models and techniques.

4.2. Training from Scratch

We attempted to train both the servant and the captain at
the same time in the same environment. The observations
of the servant:

• Commands from captain

• Distance to all walls of the room

The action space of the servant:

• Movement in the x-direction

• Movement in the z-direction

The observations made by the captain:

• Relative position of the servant

• Status of the coins

• Relative positions of the coins

• Distance to all walls of the room

The action space of the captain:

• Movement in the x-direction

• Movement in the y-direction

• Commands to send to the servant

When one of the coins is picked up it will become ”inac-
tive” meaning that it will no longer give points to any agent
that touches it. For the rest of the paper we will refer to
whether or not a coin is ”inactive” as the status of the coin.
The reward function of the both agents is defined below:

• Existential reward of -1 at every time step to each agent

• Distance reward of -1 * distance to closest coin to
agent

• Reward of +300 applied to both servant and captain if
either picks up a coin

• Captain also gets the Distance Reward of the servant

The reward function for lead-1 is defined below:

• Existential reward of -1 at every time step to each agent

• Distance reward of -1 * distance to closest coin to
agent

• Reward of +300 applied to both servant and captain if
either picks up a coin

Even after training for 19 million time steps the models
generated for both the servant and the captain were not able
to consistently pick up the coins. This is most likely due to
the overall system complexity. By training both agents from
scratch we are forcing the following actions to be learned at
the same time:

• Servant interprets commands sent by the captain

• Servant moves in response to captain’s commands

• Captain controls the servant with commands

• Captain chooses the best path for itself

What makes this system so complex is that some items
listed above are dependent on others. For instance, the abil-
ity of the servant to interpret commands sent by the captain
and the captain learning to control the servant are depen-
dent on one another. Either the format of the commands
or the way the servant responds needs to be consistent in
order for any learning to occur. But because the system is
trained from scratch neither are initially consistent. In or-
der to simplify the problem we decided to train two leads to
accomplish the following tasks:
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• Lead 1 - move to collect a single coin given the coin’s
relative position

• Lead 2 - control two trained Lead 1’s in order to collect
two coins in a room

After both leads have been trained the understudy will
observe the environment in which Lead 2 is controlling two
Lead 1s. The reward function of the understudy will solely
be based upon how closely its actions are to those of the
trained leads.

4.3. Training Lead 1

Figure 2. Environment and relevant observations for the Lead 1
agent trained by itself.

The environment used to train Lead 1 is shown in Figure
2 in which the agent makes the following observations:

• Relative position of the coin (rel-x and rel-z)

• Distances to all edges of the room (d1, d2, d3 d4)

The Lead 1 agent has two actions that it can perform
during each time step:

• Movement in the x-direction

• Movement in the z-direction

Lead 1 was trained for 5.0e5 time steps using a fully con-
nected neural network with 3 hidden layers and 64 hidden
units at each layer.

4.4. Training Lead 2

The environment used to train Lead 2 is shown in Figure
3. Lead 2 does not move around the environment to collect
coins. Instead, it sends messages to two fully trained Lead
1 agents which will act as servants. Instead of receiving the
relative position of a coin, each Lead 1 agent will receive
two numbers from the Lead 2 agent. Unlike when we tried

Figure 3. Environment used to train a Lead 2 agent. The Lead 2
agent is not visible as it does not collect coins itself (it commands
the two Lead 1’s to collect coins).

to train the system from scratch, now the way the recipients
of commands will respond consistently because they have
already been trained. This will make it easier for the agent
sending the commands (in this case the Lead 2 agent) to
learn what commands are effective in different situations.

The observations made by the Lead 2 agent are:

• Relative position of both Lead 1 agents

• Status of both coins (able to be picked up)

• Relative positions of both coins

The actions taken by Lead 2:

• Send two floating point numbers to each Lead 1

The Lead 2 agent was trained for 2.0e6 time steps using
a fully connected neural network with 3 hidden layers and
64 hidden units per hidden layer.

The reward function for the Lead 2 agent consists of the
following:

• Existential reward at every time step of -1

• Distance rewards for both Lead 1 agents

• Reward of +300 when either Lead 1 picks up a coin

4.5. Understudy Training

4.5.1 Understudy 1

We decided to first train an understudy on a single trained
Lead 1 agent (environment similar to that pictured in Fig-
ure 2, but with an understudy agent) and compare its perfor-
mance with that of the trained Lead 1 as a proof of concept.
This understudy took in the following observations:

• Position of the coin relative to the Lead 1 agent
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• Distances of the Lead 1 agent to the walls

After taking in the observations listed above the under-
study calculates the following two actions:

• Movement in the x-direction

• Movement in the z-direction

The reward for the understudy at each time step is calcu-
lated using the following equation:

R = −1 ∗ ((LA1 − UA1)
2 + (LA2 − UA2)

2) (1)

Where UA1 and UA2 are the actions of the understudy
and LA1 and LA2 are the target actions of Lead 1. Be-
cause the total reward is always negative, optimizing the
reward from Equation 1 would mean minimizing the differ-
ence between the actions of Lead 1 and the actions of the
understudy.

The understudy of Lead 1 was trained for 2.0e6 time
steps with a neural network with 3 hidden layers and 64
hidden units per layer.

4.5.2 Understudy 2

In order to train an understudy as a captain, we insert an un-
derstudy into the environment where a Lead 2 controls two
Lead 1’s (similar Figure 3). However when the understudy
is placed in the environment both the Lead 2 and Lead 1
agents are fully trained. The goal is to train the understudy
to both send commands like the Lead 2 agent and be able
to navigate to coins like the Lead 1 agents. Just like the
proof of concept described above the understudy will not
be interacting with the environment. It will merely be tak-
ing in observations and comparing its actions to the actions
of the fully trained Leads. The understudy will essentially
pick one of the Lead 1’s (we will call Lead 1A) and learn
how it moves around the map based upon the locations of
the coins and the other Lead 1 (referred to as Lead 1B). The
understudy takes the following observations from the envi-
ronment:

• Location of Lead 1B relative to Lead 1A

• Status of the targets

• Location of the targets relative to Lead 1A

• Distance of Lead 1A to all of the walls

However, unlike a Lead 1 agent, the understudy will have
four items in its action space:

• Movement in the x-direction

• Movement in the z-direction

• Two float point numbers sent to Lead 1B

The total reward the understudy receives will solely be
based on how closely the understudy’s actions resemble that
of the Lead 1A and Lead 2 agents. The total reward is thus
represented by the following equation:

Rtotal = RL1A +RL2 (2)

Where RL1A and RL2 are the rewards calculated by
comparing the understudy’s actions to their counterparts in
the L1A and L2 action spaces respectively and be calculated
using Equation 1. The understudy was trained for 1.2e7

time steps using a neural network with 3 hidden layers, 64
hidden units per layer and a learning rate of 5.0e3.

5. Results
5.1. Scored Runs

In order to test the functionality of the models, we de-
veloped testing versions of the environments used to train
the Lead 1 and Lead 2 agents. These environments are la-
beled Test 1 and Test 2. Each environment will spawn a set
of coins whose locations have been pre-determined to en-
sure fairness and consistency in scoring the models. Test
1 spawns only one coin at a time while Test 2 spawns two
coins at a time. New coins are only spawned after all the
coins currently in the room have been picked up. Each time
a new set of coins is spawned in the room a timer is set for 3
minutes. If the agents can’t pick up all coins in the room in
3 minutes then the game is over and the model finishes with
its current score. After picking up all the coins in the room
the model’s score is increased by the following equation:

Score = Score+ Trem (3)

Where Trem is the number of seconds left on the reset
timer. Below is a table of the scoring results for all the
models discussed in the experimentation section where Un-
derstudy 1 and 2 are the understudies trained in the Lead 1
and Lead 2 environment respectively.

Model Environment Score
Lead 1 Test 1 17,784.20

Understudy 1 Test 1 17,655.16
From Scratch Test 2 0.00

Lead 2 and two Lead 1’s Test 2 17,771.02
Understudy 2 Test 2 178.02

As you can see from the table above, neither understudy
is able to beat the models containing Lead 1 and/or Lead 2
agents. The Understudy 1 model was very close to the Lead
1 score on Test 1 but Understudy 2 was only able to col-
lect 1 set of coins before time expired resulting in a score of
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178.02. This is much lower than the score of 17,771.02 ob-
tained by the model containing two Lead 1’s and one Lead
2. The model trained from scratch was not able to collect
any coins in the Test 2 environment and received a score of
0.

5.1.1 Understudy 1 vs. Lead 1

Figure 4 shows an agent from the Test 1 environment trav-
eling to pick up a coin. Notice how the path created from
the Understudy model is much more smooth than that of
the Lead 1 path. Qualitatively it would seem that the un-
derstudy path should be faster, however, there are several
periods during the test that Understudy 1 pauses and takes
some time to locate the coin. The time taken by these pauses
is ultimately what caused the Understudy 1 model to score
less than the Lead 1 model. It is worth noting that training
for Understudy 1 was stopped before the reward (calculated
in Equation 1) reached zero. This means that Understudy 1
is not able to completely mimic the actions of Lead 1 hence
the difference in paths taken to get the same coin and the
strange pauses taken by Understudy 1.

Figure 4. Paths generated by agents using the Lead 1 and Under-
study 1 models.

5.2. Conclusion

As shown in the Results section, we were able to train an
understudy to mimic the functionality of the Lead 1 Agent.
However, this replication was not perfect which resulted in
a lower score for Understudy 1 when running in the Test 1
environment compared to Lead 1’s score. Although Under-
study 2’s score on the Test 2 environment was much lower
than that of Lead 2 two Lead 1’s, it still provided a notice-
able improvement to training from scratch.

In the end, we were not able to effectively create a
captain-servant model using the Understudy approach leav-
ing much future work to consider. It is possible that a 3-
layer fully connected network with 64 hidden units does not
have large enough capacity to learn the model required by
the captain. Future experiments could fine-tune the hyper-
parameters of the network so as the achieve optimal per-
formance. Another area of analysis that could benefit this
project is to look into the reward functions used by the un-
derstudies. Perhaps simply taking the sum of the squared
differences between the actions of the understudy and its
leads is the best solution. Additionally, more training time
analysis is required with respect to scaling of a number of
tasks and/or number of agents to learn from. With improve-
ments to he understudy approach, we believe that this tech-
nique can be generalized to multiple applications, where
the trained agent can teach an understudy how to perform
a combination of tasks and/or skills.

6. Appendix
Hyper-parameters used for experimentation in the coach

model are given below.

Hyper-parameters Lead 1 Lead 2
Train Iterations 5.0e5 2.0e6
Minibatch Size 1024 1024
Learning Rate 3e-4 3e-4

Hyper-parameters Understudy 1 Understudy 2
Train Iterations 2.0e6 1.2e07
Minibatch Size 1024 1024
Learning Rate 5.0e-3 5.0e-3

All of the above models were tested with 64 hidden units
and 3 layers.

Hyper-parameters used for experimentation in the model
without the understudy are given below.

Hyper-parameters Captain Servant
Train Iterations 19.0e6 19.0e6
Minibatch Size 1024 1024
Learning Rate 3.0e-4 3.0e-4
Hidden Units 64 64

Layers 3 3
Epochs 3 3
Epsilon 0.2 0.2
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